

ADVANCED REACTOR SAFEGUARDS

Process monitoring for MC&A: Optical spectroscopy

PNNL-SA-172291

PRESENTED BY

Amanda M Lines, **Shirmir D Branch**, Heather M Felmy, Adan Schafer Medina, Sam A Bryan

03 May 2022

Common Process Monitoring Goals in Industry

 Fundamental characterization

Analytica
Chimica
Acta Analyticastella Acta Acta Analyticastella Acta Acta Analyticastella Acta Acta Analyticastella Acta Acta Analytical Chemistry

Informed and optimized R&D

- Process optimization
- Process control
- Material accounting

Chemical Characterization: Optical Spectroscopy

- Provides chemical information
 - Identification and quantification
 - Oxidation State
 - ✓ Essential information for control of systems
 - Molecular and elemental species
 - ✓ Essential information to control general system behavior (e.g., precipitation, species interaction)
- Highly mature technology
- Simplistic integration
- Versatile

System scale

Molten Salt

Applications to MC&A in MSRs

- MSR systems pose unique challenges to MC&A analysis
- Building robust capabilities for inline analysis of the system could provide needed information without opening the system for grab sample collection
- Provide needed information and measurement uncertainty for actinides and other key targets without placing undue burden on the MSR system

Roadmap Development

- Identify target analytes and technology needed to monitor species
- Outline current state of the art and technology gaps for monitoring capabilities
- Plan technology development roadmap

Phase 1: Laboratory Testing

- Complete scoping study for optical fingerprints in target salt system: smallscale
- Design large scale (e.g. immersion probe) interrogation mechanism for system infrastructure
- Test large scale probe response and durability

Phase 2: Collect training set and build models

- Design training set to capture target and interfering signatures
- Collect training set
- · Build chemometric models
- Validate model performance

Phase 3: Large scale testing

- Explore options to test system performance in larger scale system mimicking deployment conditions
- Optimize design and models

Phase 4: Deployment preparation

- Identify QA requirements
- Assess technology transfer options
- Explore approved pathways to integrate probes

PNNL Capabilities: FY21 Accomplishments

FY22 Goals and Progress Overview

• M2RS-22PN0401051: Determine Feasibility of Optical Spectroscopy for Actinide Quantification in MSRs (9/30/2022, on time)

- Collection of optical data (training and validation sets)
 - Opportunity to partner with Industry (e.g., TerraPower) to look at representative salts
- Building chemometric models for accurate/automated data analysis
- Determining uncertainties, limits of detection, etc and comparing to MC&A needs/requirements

Collection of Optical Data: Overview

- Optical spectroscopy can provide the complete inventory (e.g. total U) but can also provide needed insight into chemical complexity of process
 - Indicators of precipitation or interaction that could impact accounting
- Cl based melts
 - Fingerprints will be slightly different in F, but approach is the same
- Exploring multiple salt types/temperatures to gain insight into flexibility of application
 - But heavily taking advantage of opportunity to characterize representative salts provided by industry partner

Collection of Optical data: U(IV) in NaKMg-Cl

Collection of Optical data: U(VI) in NaKMg-Cl

Real-time monitoring of conversion from U(IV) to U(VI)

Collection of Optical data: U(IV) and U(III) in LiK-Cl

- Following cleaning of salt
 - Sparging with HCl under vacuum for 6 hrs
- Prior to cleaning impurities from LiCl (purchased as 99.9% anhydrous) caused U to very quickly oxidize

Complex chemistry: Addition of fission products

 Ability to track unique fingerprints in presence of interfering species

Chemometric Model Building

Enabling researchers and operators to understand complex processes with in situ and real-time feedback on process conditions

Information

Chemometric Model Building

 Initial chemometric model showing accurate analysis of U in both (IV) and (VI) oxidation states within molten salt environment

RMSECV (uncertainty)

U(IV) 0.0014 M U(VI) 0.0011 M

Continuing to optimize models

Chemometric Model Building: U3/U4/U6

Soln-ID	U-added
blank	
Soln-1	U(IV)
Soln-2	U(IV)
Soln-3	U(IV)
Soln-4	U(IV)
Soln-5	U(III)
Soln-6	U(III)

Next steps

- Concluding data set collection
 - Much of the needed sets are complete but we will continue to take advantage of opportunities to look at industry or other relevant salts
- Chemometric modeling
 - Characterize uncertainty, limits, and working ranges
- Determine if optical spectroscopy can meet MC&A needs

Acknowledgements

PNNL Team:

Amanda Lines
Sam Bryan
Shirmir Branch
Heather Felmy
Adan Schafer Medina
Danny Bottenus

Students/visiting faculty/guests:

Prof. Gilbert Nelson (C. Idaho)
Job Bello (Spectra Solutions Inc.)

Hope Lackey (WSU)

PoKi Tse (CSM)

Nicole Hege (CSM)

Molly Vitale-Sullivan (SULI)

Andrew Clifford

U.S. DOE NE, ARS campaign

Thank you